Problem
A non-empty zero-indexed array A consisting of N integers is given.A permutation is a sequence containing each element from 1 to N once, and only once.
For example, array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
is a permutation, but array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
is not a permutation, because value 2 is missing.
The goal is to check whether array A is a permutation. Write a function:
int solution(int A[], int N);
that, given a zero-indexed array A, returns 1 if array A is a permutation and 0 if it is not.
For example, given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
the function should return 1.
Given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
the function should return 0.
Assume that:
N is an integer within the range [1..100,000];
each element of array A is an integer within the range [1..1,000,000,000].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
Solution
public class PermCheck {
public int solution(int[] A)
{
int invalid = 0, valid =1;
int n = A.length;
boolean[] perm = new boolean[n+1];
int numbers = n;
for(int i=0; i< n; i++)
{
if(A[i]> 0 && A[i]<= n)
{
if(perm[A[i]] == false) {
perm[A[i]] = true;
numbers--;
if(numbers == 0) return valid;
}
else return invalid;
}
}
return invalid;
}
public static void main(String[] args) {
int[] A = new int[1000000];//= {0};
for(int i=1; i<= 1000000; i++)
{
A[i-1] =i;
}
int output = new PermCheck().solution(A);
System.out.println(output);
}
No comments:
Post a Comment